Step 1: Assess Your Current Communication Costs Equipment and Infrastructure Costs (Annual) Annual maintenance and repair costs: \$ Replacement equipment purchases (annual): \$ Communication system support/IT costs: \$_____ Subtotal - Current Equipment Costs: \$ Operational Impact Costs (Annual) Communication-Related Downtime: Average unplanned downtime hours per month: _____ Your cost per hour of production downtime: \$_____ Monthly downtime cost: _____ hours × \$____ = \$_____ Annual downtime cost: \$_____ × 12 = \$_____ **Emergency Response Delays:** Average emergency response time (minutes): Target emergency response time (minutes): Response delay cost per incident: \$ Number of emergency incidents per year: Annual emergency delay cost: \$_____ × ____ = \$_____ Miscommunication and Rework: Estimated monthly costs from communication errors: \$ Annual miscommunication cost: \$_____ × 12 = \$____

Shift Handover Inefficiencies:

- Time lost per shift handover (minutes):
- Number of shift changes per day: _____
- Average hourly labor cost: \$_____

Daily handover cost: (/60) × _	×\$=\$			
 Annual handover inefficience 	y cost: \$	× 365 = \$		
Maintenance Coordination Delays:	}			
Average maintenance respon-	se time (minutes): _			
Target maintenance response	time (minutes):			
 Cost of delayed maintenance 	per incident: \$			
Maintenance incidents per m	onth:			
Annual maintenance delay of	cost: \$ × _	× 12 = \$		
Total Current Annual Communication	n Costs			
Cost Category	Annual Amount			
Equipment & Infrastructure	\$			
Downtime	\$			
Emergency Response Delays	\$			
Miscommunication & Rework	\$			
Shift Handover Inefficiencies	\$			
Maintenance Coordination Delays	\$			
TOTAL CURRENT COSTS	\$			
Step 2: Calculate Potential Savings with Smart Radio System				
Equipment and Infrastructure Saving	S			
Reduced Maintenance Costs:				
Current annual maintenance: \$				
Expected maintenance reduction	tion (typically 30-50	%):%		

•	Annual maintenance savings: \$ × (% ÷ 100) = \$
Exten	ded Equipment Lifespan:
•	Current equipment replacement cycle (years):
•	Extended lifespan with smart radios (years):
•	Annual equipment replacement costs: \$
•	Lifespan extension value:%
•	Annual equipment savings: \$ × (% ÷ 100) = \$
Opera	ntional Efficiency Savings
Down	time Reduction:
•	Current annual downtime cost: \$
•	Expected downtime reduction (typically 25-40%):%
•	Annual downtime savings: \$ × (% ÷ 100) = \$
Emer	gency Response Improvement:
•	Current annual emergency delay cost: \$
•	Expected response time improvement (typically 40-60%):%
•	Annual emergency response savings: \$ × (% ÷ 100) = \$
Comr	nunication Error Reduction:
•	Current annual miscommunication cost: \$
•	Expected error reduction (typically 60-80%):%
•	Annual communication error savings: \$ × (% ÷ 100) = \$
Shift	Handover Efficiency:
•	Current annual handover inefficiency cost: \$
•	Expected efficiency improvement (typically 50-70%):%
•	Annual handover savings: \$ × (% ÷ 100) = \$
Maint	enance Coordination Improvement:
•	Current annual maintenance delay cost: \$

 Expected coordi 	ination improvement (typically 45-65%):%
Annual mainter	nance coordination s	avings: \$	× (% ÷ 100) = \$
Additional Productivity	Benefits		
Worker Productivity In	nprovement:		
Number of produce	uction workers:		
Average annual I	labor cost per worker:	\$	
Expected production	ctivity improvement (t	ypically 5-15%): ₋	%
 Annual product 	tivity savings:	×\$	_ × (% ÷ 100) = \$
Supervisor Efficiency	Gains:		
 Number of supe 	rvisors/managers:		
Average annual s	salary per supervisor:	\$	
Expected efficie	ncy improvement (typ	ically 10-20%): _	%
Annual supervis	sor efficiency saving	s:×\$_	× (% ÷ 100) = \$
Total Annual Savings Su	ımmary		
Savings Category	Annual A	mount	
Equipment & Infrastru	cture \$		
Downtime Reduction	\$		
Emergency Response	\$		
Communication Error	Reduction \$		
Shift Handover Efficier	ncy \$		
Maintenance Coordina	ation \$		
Worker Productivity	\$		

Supervisor E	fficiency	\$	
TOTAL ANNU	JAL SAVINGS	\$	
Step 3: Invest	ment Requirements		
Smart Radio S	System Investment		
Initial Systen	n Costs:		
• Smart	radio hardware (per u	nit): \$	
• Numbe	er of radio units neede	ed:	
• Total h	ardware cost: \$	×=	\$
• Softwa	re licensing (annual):	\$	
• Installa	ation and setup: \$		
 Total in 	nitial investment: \$_		
Implementat	ion Costs:		
• Trainin	g and change manage	ement: \$	
 System 	n integration costs: \$_		
• Tempo	rary productivity loss	during transition: \$_	
• Total ii	mplementation cost	s:\$	
Ongoing Ann	ual Costs:		
 Software 	re licensing/subscrip	tion: \$	
 Mainte 	nance and support: \$	5	
 Total a 	nnual operating cos	ts: \$	
Total Investme	ent Summary		
Investment	Category	Amount	
Initial Systen	n Investment	\$	

Impl	ementation Costs	\$				
TOTA	AL UPFRONT INVESTMENT	\$				
Annu	ual Operating Costs	\$				
Step 4	1: ROI Calculation and Analy	rsis				
Retur	n on Investment Calculation	I				
First \	Year Analysis:					
•	Total annual savings: \$					
•	Annual operating costs: \$_		-			
•	Net annual benefit: \$	\$_		_=\$		
Payba	ack Period:					
•	Total upfront investment: \$	j	_			
•	Net annual benefit: \$					
•	Payback period: \$	÷\$	=		years	
•	Payback period in months	s:	× 12 =		months	
Three	-Year ROI:					
•	Net annual benefit: \$					
•	Three-year total benefits: \$	<u> </u>	× 3 = \$		_	
•	Total upfront investment: \$	<u> </u>	_			
•	Three-year net return: \$_		- \$	= \$		
•	Three-year ROI percentag	(e: (\$	÷\$_) × 100 =	%
Break	-Even Analysis					
Mont	hly break-even calculation	:				
•	Total upfront investment: \$)	_			
•	Net monthly benefit: \$	÷1	2 = \$	 		

•	Months to break-even: \$	÷\$	=	months
Step	5: Results Interpretation			
ROI B	enchmarks for Manufacturing C	ommunication	Systems	
Excel	llent ROI (Investment Recomm	ended):		
•	Payback period: 12-18 mon	ths		
•	Three-year ROI: 200%+			
•	Annual savings exceed 25% of	investment		
Good	ROI (Strong Business Case):			
•	Payback period: 18-30 months	;		
•	Three-year ROI: 100-200%			
•	Annual savings exceed 15% of	investment		
Mode	erate ROI (Consider with Strate	gic Benefits):		
•	Payback period: 30-48 months	3		
•	Three-year ROI: 50-100%			
•	Annual savings 10-15% of inve	stment		
Your	Results:			
•	Payback period: m	onths		
•	Three-year ROI:%			
•	Annual savings as % of invest	tment:	%	
Addit	ional Benefits to Consider (Not C	Quantified Abo	ve)	
Safet	y and Compliance Benefits:			
•	Reduced workplace accidents	and injuries		
•	Improved emergency response	e capabilities		

Strategic and Competitive Benefits:

• Enhanced regulatory compliance documentation

• Lower insurance premiums and liability exposure

- Foundation for future digital transformation initiatives
- Improved ability to attract and retain skilled workers
- Enhanced customer confidence and satisfaction
- Competitive advantage in operational efficiency

Risk Mitigation Benefits:

- Reduced dependency on aging communication infrastructure
- Lower risk of communication-related safety incidents
- Improved business continuity and disaster recovery
- Future-proofing against technology obsolescence

Step 6: Next Steps Based on Your Results

If Your ROI Analysis Shows Excellent Returns:

- 1. **Present business case to leadership** with completed worksheet
- 2. **Request budget approval** for smart radio system implementation
- 3. Begin vendor evaluation process starting with Walt Smart Radio System
- 4. Plan implementation timeline targeting quick wins in high-impact areas

If Your ROI Analysis Shows Good Returns:

- 1. **Identify highest-impact areas** for initial pilot implementation
- 2. Consider phased rollout to spread investment over time
- 3. **Explore financing options** to improve cash flow impact
- 4. Document additional strategic benefits to strengthen business case

If Your ROI Analysis Shows Moderate Returns:

- 1. Review calculation assumptions consider if savings estimates are conservative
- 2. Focus on safety and compliance benefits that may justify investment
- 3. Consider starting with pilot program in highest-impact department
- 4. **Re-evaluate in 6-12 months** as operational conditions change

Action Planning Template

Immediate Actions (Next 30 Days):

- Complete ROI worksheet with accurate facility data
- Present findings to operational leadership
- Identify pilot program opportunities
- Research smart radio system vendors and solutions

Planning Phase (30-90 Days):

- Develop detailed implementation timeline
- Create change management and training plan
- Establish success metrics and tracking methods
- Secure budget approval and implementation resources

Implementation Phase (90+ Days):

- Execute pilot program in selected area
- Measure and document results vs. projections
- Scale successful implementation across facility
- Continuously monitor and optimize system performance

ROI Worksheet Summary

Your Investment Analysis:

•	Total Annual Savings: \$		
•	Total Upfront Investment: \$		
•	Payback Period:	months	
•	Three-Year ROI:	%	